BearWorks BearWorks
College of Arts and Letters
1-1-2021
IDCube lite: Free interactive discovery cube software for multi- IDCube lite: Free interactive discovery cube software for multi-
and hyperspectral applications and hyperspectral applications
Deependra Mishra
Helena Hurbon
John Wang
Steven T. Wang
Tommy Du
See next page for additional authors
Follow this and additional works at: https://bearworks.missouristate.edu/articles-coal
Recommended Citation Recommended Citation
Mishra, Deependra, Helena Hurbon, John Wang, Steven T. Wang, Tommy Du, Qian Wu, David Kim et al.
"IDCube Lite: Free Interactive Discovery Cube software for multi and hyperspectral applications." Journal
of Spectral Imaging 10 (2021).
This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.
For more information, please contact [email protected].
Authors Authors
Deependra Mishra; Helena Hurbon; John Wang; Steven T. Wang; Tommy Du; Qian Wu; David Kim; Shiva
Basir; Maria Gerasimchuk-Djordjevic; and For complete list of authors, see publisher's website.
This article is available at BearWorks: https://bearworks.missouristate.edu/articles-coal/312
Correspondence
Mikhail Berezin ([email protected])
Received: 22 January 2021
Revised: 8 April 2021
Accepted: 22 April 2021
Publicaon: 5 May 2021
doi: 10.1255/jsi.2021.a1
ISSN: 2040-4565
Citaon
D. Mishra, H. Hurbon, J. Wang, S.T. Wang, T. Du, Q. Wu, D. Kim,
S.Basir,Q.Cao,H.Zhang,K.Xu,A.Yu,Y.Zhang,Y.Huang,R.Garne,M.
Gerasimchuk-DjordjevicandM.Y.Berezin,“IDCubeLite:FreeInteracve
DiscoveryCubesowareformulandhyperspectralapplicaons”,
J. Spectral Imaging 10, a1 (2021). hps://doi.org/10.1255/jsi.2021.a1
© 2021 The Authors
This licence permits you to use, share, copy and redistribute the paper in
anymediumoranyformatprovidedthatafullcitaontotheoriginal
paper in this journal is given.
1
D. Mishra et al., J. Spectral Imaging 10, a1 (2021)
volume 1 / 2010
ISSN 2040-4565
IN THIS ISSUE:
spectral preprocessing to compensate for packaging film / using neural nets to invert
the PROSAIL canopy model
JOURNAL OF
SPECTRAL
IMAGING
JSI
Peer Reviewed Arcle
openaccess
IDCube Lite: Free Interactive Discovery
Cubesoftwareformulti-andhyperspectral
applications
Deependra Mishra,
a
Helena Hurbon,
a,d
John Wang,
a,d
Steven T. Wang,
a,d
Tommy Du,
a
Qian Wu,
a
David Kim,
a
Shiva Basir,
a
Qian Cao,
a
Hairong Zhang,
a
Kathleen Xu,
a
Andy Yu,
a
Yifan Zhang,
a
Yunshen Huang,
a
RomanGarne,
b
Maria Gerasimchuk-Djordjevic
c
and Mikhail Y. Berezin
a,d
*
a
DepartmentofRadiology,WashingtonUniversitySchoolofMedicine,4515McKinleyAve,StLouis,MO63110,USA
b
DepartmentofComputerScienceandEngineering,WashingtonUniversity,1BrookingsHall,StLouis,MO63110,USA
c
ArtandDesignDepartment,MissouriStateUniversity,901S.NaonalAve,Springeld,MO65897,USA
d
HSpeQLLC,4340DuncanAve,StLouis,MO63110,USA
Contacts
Deependra Mishra: [email protected]
hps://orcid.org/0000-0003-1578-8526
Helena Hurbon: [email protected]
hps://orcid.org/0000-0003-3181-6566
Steven T. Wang: m.d@tascienst.com
hps://orcid.org/0000-0002-5630-9010
David Kim: [email protected]om
Shiva Basir: shiv[email protected]
hps://orcid.org/0000-0002-3900-0433
Hairong Zhang: [email protected]
Kathleen Xu: [email protected]
YifanZhang:[email protected]
Yunshen Huang: [email protected]
RomanGarne:garne@wustl.edu
hps://orcid.org/0000-0002-0152-5453
Maria Gerasimchuk-Djordjevic: [email protected]
Mikhail Berezin: [email protected]
 hps://orcid.org/0000-0002-2670-2487
Mul-andhyperspectralimagingmodaliesencompassagrowingnumberofspectraltechniquesthatndmanyapplicaonsingeospaal,bio-
medical,machinevisionandotherelds.Therapidlyincreasingnumberofapplicaonsrequiresconvenienteasy-to-navigatesowarethatcanbe
usedbynewandexperienceduserstoanalysedata,anddevelop,applyanddeploynovelalgorithms.Herein,wepresentourplaorm,IDCubeLite,
anInteracveDiscoveryCubethatperformsessenaloperaonsinhyperspectraldataanalysistorealisethefullpotenalofspectralimaging.
Thestrengthofthesowareliesinitsinteracvefeaturesthatenabletheuserstoopmiseparametersandobtainvisualinputfortheuserina
waynotpreviouslyaccessiblewithothersowarepackages.Theenresowarecanbeoperatedwithoutanypriorprogrammingskillsallowing
interacvesessionsofrawandprocesseddata.IDCubeLite,afreeversionofthesowaredescribedinthepaper,hasmanybenetscompared
toexisngpackagesandoersstructuralexibilitytodiscovernew,hiddenfeaturesthatallowuserstointegratenovelcomputaonalmethods.
Keywords: hyperspectral, mulspectral, spectral imaging, IDCube, segmentaon, geospaal, biomedical
2 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
Introducon
Mul-andhyperspectralimaging(HSI)modalieshave
emergedasanexcingopportunitytoexploreopcal
properesofobjectsanddiscoverhiddenfeaturesnot
accessible by other techniques. In contrast to the tradi-
onalspaalimagesproducedbyconvenonalcameras,
spectralimaginggenerates3Ddatasets(datacubes),
withspaalandspectraldimensions.Witheachpixel
containinginformaonontheenremediumorhigh-
resolution spectrum, spectral imaging provides abun-
dantinformationaboutindividualchromophoresand
theirinteraconsthatcontributetothelocaon,intensity
andalteraonoftheopcalsignal,signicantlybeer
thanmonochromacortradionalcolourcameras.
1,2
This
spectral imaging approach leads to a vastly improved
abilitytoclassifyanddierenatetheobjectsbasedon
theirspectralfeatures,enablingevensmall,otherwise
unnoceable,featurestobeamplied.
In the last decade, spectralimaginghasexpandedfrom
anarrownicheaccessibleonlytoahandfuloforganisa-
onsinacademicandgovernmentalresearchfaciliesto
abroadrangeofcommercialandclinicalinstuons.As
spectral imaging hardware (benchtop scanners, handheld
HSI cameras, drones etc.) have become more available,
3–5
thenumberofspectralimagingstudieshasincreased
tremendously,
6–11
reaching more than 25,000 publica-
onsin2019.
Meaningfulanalysisofdatacubesisthemostcrical
andme-consumingstepinmanycurrentapplicaons.
Thehighdimensionalityofspectralimagingdataand
theirlargedatasizes(oen>1GB) gives an excellent
opportunity to learn more about the subject; however,
theextensiveanalyses(i.e.pretreatments,idenfying
appropriatealgorithmsetc.)ofthesedatasetspresentthe
strongestbarriertotheimagingworkow.Despitethe
progressincomputaonalspeedandalgorithmdevel-
opment,ecientcomputaonalapproachessuitablefor
generaluseapplicaonsarelacking.Well-knownsoware
packages,suchasENVI,
12
are comprehensive; however,
theyaremostlyusedforremotesensingapplicaons.
Ahandfuloffreehyperspectralsowarepackageswith
stronginnovavealgorithms(e.g.,Gerbil
13
orMulSpec
14
)
aremoresuitableforexpertsandarelimitedtogeospa-
alapplicaons.Introducedin2020,theHyperspectral
ToolboxfromMATLAB
15
hasvery few algorithms,is
limitedinthenumberofsupportedleformatsandis
largelycommand-linebased.Otherpackagesanalysing
spectralimagingdataareaachedtospecichardware
to visualise the acquired data and usually do not provide
thedesiredlevelofdataminingandprocessingcapability.
Assuch,thereisatangibleneedforamoreuniversal,
powerfulcomputaonalplaormthatenablescompre-
hensiveandrapiddataminingforavarietyofplaormsin
ordertooerreal-meeciencyandthroughputforthe
majorityofapplicaons.
Herein, we present IDCube, Interactive Discovery
Cube, Lite (hps://www.idcubes.com), a highly versa-
lesowarethatperformsalargenumberofessenal
operaonsinthespectralimagingdomainandenables
imageanalysisforusersacrossarangeoftechnicalpro-
ciencies.Thegoalofthesowareistomakespectral
imagingaccessibletonewandcurrentusersthatfocus
onobtainingusefulresultsratherthan(butnotexcluding)
developingalgorithms.Thestrengthoftheproposed
sowareliesinitsintuivedesignthatenablestheuser
toperformhigh-leveldataanalysisaswellasdevelop
theirownalgorithmsviaavisual,interacveinterface.
Builtaroundacolleconofspectralimagingalgorithms,
thesowarefacilitatesthesearchofhiddeninformaon
insidelargedatasetsprovidinganewexperienceofdata
analysis.Theenreprogramcanbeoperatedwithout
prior programming skills and allows almost any currently
useddataformatstobeprocessed.
TheoverallworkowofIDCubeLiteisshowninTable1.
Theprocessingstepsarecentredaroundthevisualisaon
module that presents the original and processed data in
a2Dformat.Thefrontendofthesowareisshownin
Figure 1.
ThecoreofthesowareiswrieninMATLABwithan
extensivenumberofbuilt-inimageprocessingfuncons.
Thecompiledsowarecanberunonanycomputerwith
aWindowsorMacOperangSystem,withouthavinga
MATLABlicense.Anenrelyfreeversionofthesoware
IDCubeLiteisavailablefordownloadfromasecurecloud
locaon,www.idcubes.com.Anextensivelibraryofvideo
tutorialsisavailablefromthelearningmoduleoftheso-
warewebsite.Belowwewillfocusonthetechnicalcapa-
biliesofIDCubeLiteanddemonstrateitsperformance
throughseveralexperimentsinthegeospaal,machine
visionandbiomedicalelds.Abriefdescriponofthe
datasets used in this paper is given in Table 2.
Features
IDCubeLiteenablesvisualanalysisofmanydatasetsfrom
avarietyofformats.Theplaormhasbeenconstantly
improving since its launch in September 2020 and now
includesmorethan50integratedalgorithmsfordata
D. Mishra et al., J. Spectral Imaging 10, a1 (2021) 3
processinganddatavisualisaon.Thesealgorithmsare
groupedintothefollowingcategories:Input/Output,
DataReducon,ImageVisualisaon,SpectralAnalysis,
PrincipalComponentAnalysis(PCA)/MaximumNoise
Fracon(MNF),SegmentaonandSpectralMatching.
Theselectedalgorithmsareoptimisedforprocessing
meanddonotexceedseveralsecondswhenprocessing
a 1 GBleonastandarddesktopcomputer.Thedescrip-
onsofthemajorfeaturesaregivenbelow.
Input/output module
IDCubeLitesupportsawiderangeofimageformats,
including Raw/HDR, DAT,TIFF, JPEG2k, PNG and
severalothers.Thelistoftheavailableformatsisgivenin
Table3.Theimportedles(datale+headerle)arerst
converted, then saved in the same directory as a single
MATLAB-typele.Thesinglelethatcombinesrawdata
andthechannelassignmentinformation(wavelength
vector)automacallyopensintheIDCubeLiteinterface
Modules Specicoperaons Usageexample
DataI/O Import, convert, export Import satellite and other images and
datasets
Visualisaon Pan, zoom Displays image
Preprocessing Cropping, binning Size decrease
Datareducon PCA,MNF Dimensionalreducon
Image enhancement Histogram-based contrast adjustment Enhanceobjectcontrastforvisualisaon
Spectral analysis Pixelselecon,SpectralMatching,end-
members etc.
Find pixels with similar spectral signatures
in image
Segmentaon Thresholding Spectralcorrelaonanddivergencemaps
Image algebra Addion,subtraconetc. Contrast enhancement
a
see SupplementaryInformaon describing the steps
Table1.ListoffunconaliesoeredbyIDCubeLite,specicfunconsandusagecase.Visually,thesefunconaliesare
mappedtopanelsshowninFigure1.
a
Figure1.FrontendoftheIDCubeLitehyperspectralsoware.A:import/export,datareducon,data
correcon;B:imagealgebraseleconwithpreselectedanduser-developedfuncons;C:wavelength
andbandwidthselecon,imageopmisaon;D:imagevisualiser,E:spectralanalysisofselectedROIs;F:
imageenhancementviahistogrammanipulaon;G:informaonabouttheimage,theconsumedcompu-
taonalresourcesfortheperformedtasks.
4 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
aertheconversioniscomplete.IDCubeLitesupports
imagingdatafromavarietyofbench-typeHSIsystems
thatuliseaRaw/HDRformataswellasfromsatellites
oeringdatainJP2andTIFF.InaddiontoHSIdata-
sets,thesowarecanalsotreatstandardRGBimages
andthuspresentsaninteresngopportunitytoapply
sophiscatedcomputaonalHSItechniquestocommon
pictures.
Thesowarecanopenuptotenhyperspectraldata-
setssimultaneouslyforalldatasetswiththesamedimen-
sions.Iftheimageshavedierentspaaldimensions,
theycanberstcroppedusingthespaalcroppingfunc-
on.Analysingmulpledatasetsinonesengenables
datacomparisonandthesameprocessingfordatafrom
longitudinal studies.
Preprocessing module
Thepreprocessingmoduleincludestheabilitytoperform
binninginthespatialdomaintodecreasethesizeof
thefileandreducenoise.Themoduleoffersinterac-
tivity through spatial cropping, spectral cropping and
ipping/transposion/rotaon.Allpreprocessingfunc-
onsareappliedgloballytotheenredataset.TheDATA
CORRECTIONtoolremovesundesirableartefactscaused
byscaeringoflightthatproducesundesirableartefacts.
Thecorreconalgorithmsincludemulplicavescaering
Dataset Applicaon Instrument
# Channels and
wavelengths
Size
(MB)
Random items Machine vision Benchtop, SWIR/pushbroom 510 channels
867–1700nm
326
Human hand Biomedical Benchtop, SWIR/pushbroom 343channels
950–170 0nm
217
Leaves Agriculture Benchtop, SWIR/pushbroom 350channels
940–170 0nm
82
ViewofForest
Park in St Louis
Geospaal Satellite, Pleiades-1B/AIRBUS 4 channels
430–550nm (blue),
490610nm (green),
60 0 –720nm (red);
750950 nm(NIR)
46
Table2.Descriponofthedatasetsusedasanexample.
Format Type of detectors Source Implementaon
JPEG,PNG Colour RGB cameras Many Yes
TIFF Mulandhyperspectralsatellites
Bench-type imagers
AVIRIS
AVIRISNG
a
OBTsatellites
Hyperion
Various
Yes
In process
Yes
Yes
Yes
hdr/raw/dat Mulandhyperspectralsatellites
Bench-type HSI imagers
Hyperion
Specim
Middleton
SpectralVision
CytoViva
Headwall
Yes
Yes
Yes
Yes
Yes
JP2
h5
Mulspectralsatellites
Mulspectralsatellites
Sennel-2
SuomiNPP
Yes
In process
a
AVIRISNextGeneraondatahavedierentsetsofwavelengthsfromtheAVIRIS
Table3.TypesoflesandformatssupportedbyIDCubeLite(othersourcescanalsoberecognised).
D. Mishra et al., J. Spectral Imaging 10, a1 (2021) 5
correcon(MSC)
16
andstandardnormalvariate(SNV)
17
funcons.Thisfeatureisespeciallyusefulforbiomedical
imaging;forexample,todecreasescaeringartefacts
fromskin.Otherpreprocessingstepstodecreasethesize
oftheimageleviaremovalofhighlycorrelangspectral
bandsandextracngendmembersignaturesfromhyper-
spectral data
18
willbeimplementedinfutureversions.
Visualisaonmodule
This module is central to image processing and pres-
entsthree-dimensional(3D)datasetsthroughasetof
two-dimensional (2D) images. The 2D images are gener-
ated through the three wavelength channels. The wave-
lengthseleconcanalsobeappendedwithapreselected
bandwidthratherthanthedefaultbandwidthof1.The
producedmonochromacimagecanbecolouropmised
by applying an appropriatelookuptable(LUT) from
morethan20availableLUTs.Thevisualisaonisfurther
adjustedviathe histogram tool.The BROADBAND
funconenablesvisualisingtheimagewithinaspecic
wavelengthrange.Whenthisfunconisselected,the
wavelengthsw1andw2willprovidetheboundariesfor
thespectralrange(i.e.theimageproducedbyselecon
w1= 950 nm, and w2=1400nm would correspond to an
imageacquiredbythecameraoverthe950–1400nm
range).TheMATHEMATICSmodeinconjunconwith
theTWO-CHANNELmodesenablestheusertoconduct
imagealgebra.Presetfunconsincludedivisionofone
wavelengthchanneloveranother,subtracon,logical
functions etc.TheEXPRESSIONmoduleallowsthe
usertotypeacustommathemacalfunconorselect
fromthelistofimplementedfunconsspeciedinthe
MathemacsSheetforExpressionsavailablefromthe
sowarewebsite(hps://www.idcubes.com/tutorials).
TheSINGLECHANNEL,TWO-CHANNELandTHREE-
CHANNELtoolsallowuserstoscrolltheimagesthrough
the individual wavelengths. The RGB mode enables
the user to combine up to three wavelengths into a
pseudo-RGBimage.Eachwavelengthcanbeusedwith
thespecicbandwidth.TheHISTOGRAMopmisaon
andtheCONTRASTADJUSTMENTeldsenabletheuser
toimprovetheimagecontrast.Oneoftheuniquefeatures
ofIDCubeLiteistopresentthedatasetasamoviewhere
eachframerepresentsanimageataspecicwavelength
orwithaformulaapplied.Thisfeatureimplementedin
theFRAMEBYFRAMEdisplayfunconradicallymini-
misestheamountofuserinteraconandpreventsimage
processingfague.Theimagewiththeenredatasetcan
beipped,transposedandrotated.Theproduced2D
image can be also copied, zoomed, panned and saved.
Spectral analysis module
The spectral analysis module enables the user to visualise
andprocessspectralinformaonfromindividualpixels
andinteracvelyselectregionsofinterests(ROIs).Inthe
REAL-TIMEspectralmode,themoduleenablesvisual-
isaonofspectrafromindividualpixelsbymovingthe
cursorovertheimage.Themoduleautomacallyrecog-
nisesaspectralrangeandscalesthedimensionsofthe
spectralplot.IntheMULTI-SPECTRAmode,theuser
ispromptedtoselectoneormoreROIs.Thespectrum
foreachROIreectstheaveragespectrumacrossthe
selectedarea.SPECTRAMATHEMATICSenablesthe
usertoperformbasicmathfuncons,i.e.subtraconand
divisionofthespectra,spectranormalisaonandcalcu-
laonsoftherstandsecondderivaves.Theusercan
comparethespectraloutputfromtheselectedROIsusing
spectralcorrelaon,spectralinformaondivergence
19
or
spectral angle
20
funcons.Relavelyhighspectralcorre-
lation values, low divergence and low spectral angles
suggestregionswithsimilarspectralproperesindicang
theobjectsbelongtothesameclassofobjectswith
similaropcalprolesorsamematerials.Allspectracan
bezoomed,pannedandexportedtoExcelorotherdata
analysissoware.
Principal Component Analysis (PCA) module
The PCA module (Figure 2) computes associations
betweendatapointsandconvertsadatasetofpoten-
allycorrelatedvariablesintoanewsetoflinearlyuncor-
related principal components.
21,22
Uptothreeprincipal
components can be selected by the user to generate a
pseudo-colour RGB image, where the selected compo-
nents are assigned to three colours, red, green and blue.
Objectswiththesamecolourindicatehighsimilarity
betweentwosubjects.Forexample,acentrifugetube
andawrenchshowninFigure2areapparentlymadefrom
the same material, since their PCA-based pseudo-colours
arealmostidencal.Thepseudo-colourRGBimagecan
befurtheradjustedthroughchangingtheWEIGHTofthe
individualcomponent,adjusngtheCONTRASTtothe
wholeimageandapplyingtheGAMMACORRECTION.
Thegammacorrecon
23
helps to improve the contrast
iftheimageistoodarkortoobright.Thevalueofthe
gammacorreconcantakeanyvaluebetween0and
innity(upto10usingaslider,ortoanyvalueiftyped).If
the gamma is less than 1, the output image is brightened,
forgammagreaterthan1,theoutputimageisdarkened.
Ingeneral,thetotalnumberofprincipalcomponents
isequaltothenumberofwavelengthchannels.Since
mostoftheinformaonisintherstfewcomponents,
6 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
theIDCubeLiteversionlimitsthenumberofstoredprin-
cipalcomponentsto20.TheCOMPONENTSPECTRA
window enables the user to examine the eigenvectors
visuallytocheckifrelevantfeaturesmaybeextracted.
Themodulealsopresentsthecumulativefractionof
variance.Inthegivenexample,thersttwocomponents
carry>96%ofthevariance.PCAtransformstheorig-
inaldatacubeintoanewdatacubewiththesamespaal
dimensionsandchangestheZ-axisfromwavelengths
to principal component scores. In that case, PCA can be
alsoconsideredasafunconthatdecreasesthesizeof
thedata,sinceonlyveryfewprincipalcomponents(rst
20,forexample)canbeused.Thenew,smallerdatacube
canbeexportedbacktotheVISUALISATIONpaneland
analysed using implemented algorithms.
AvariaonofthePCAmethodisanMNF.
24
TheMNF
transform has advantages over the PCA transform
becauseittakesthenoiseinformationinthespatial
domainintoconsideraon.Forexample,theshadows
seen in Figure 2A can be removed to some extent using
theMNFfunconimplementedinIDCubeLiteasshown
in Figure 2B.
Segmentaonmodule
Thesegmentationmodule in IDCubeLite(Figure3)
enablesminimallysupervisedclassicaonofadataset
fromanyofthepreprocessingalgorithms(spaal,spec-
tralcropping,binning,PCAetc.).Inatypicalworkow,
theuserselectsoneoftheclassicaonalgorithms[i.e.
based on the improved Spectral Angular Mapper (SAM)
currently implemented in IDCube Lite] and the metrics
(i.e. area, perimeter) then draws an area (class) on the
imagepassedfromtheVisualisaonmodule.Areaswith
similarspectralproperes(thathavelowvaluesofspectral
angle)arerepresentedbythesamecolourandquaned
according to the selected metrics. The example shown in
Figure3illustratesthismethodforclassicaon.Onecan
nocethatthemethodishighlysensivetoevensmall
spectral changes, where the vial and the wrench can be
separatedeventhoughtheirspectralcorrelaonvalue
is0.99(asmeasuredusingtheSPECTRALANALYSIS
module, see above).
Speed and resources
Duetothelargesizeofhyperspectraldatasets,manyof
thefunconsofthesowareareopmisedforworking
with large datasets exceeding several hundred mega-
bytes. Figure 4presentsthespeedofthemostdemanding
funconsintypicalhyperspectraldatasetanalysis.Ale
ofabout1 GB can be opened in less than 10s on a stan-
dardhomePCandsignicantlyfasteronmorepowerful
computers.Mostofthevisualisaonandspectralanalysis
funconsareperformedalmostinstantaneously.PCA
isthemostme-consumingwiththeprocessingme
signicantlyandnon-linearlyincreasingwiththesizeof
thele,reachingmorethan2 minfora1-GBleinour
testPC(DellInc.,VostroDT5090,IntelCorei7-9700,8
Core, GB (1 × 8GB) DDR4 2666 MHzUDIMM).
Examples
Allexamplesmenonedinthispaper(Table2)andother
datasetscanbedownloadedfromIDCubeLitedirectly
Figure2.Preprocessingtools.A.PrincipalComponentAnalysisofahyperspectraldataset.First,second
and third principal components are combined in a pseudo-colour RGB image. The module also presents
thespectraofselectedcomponentsandacumulavefraconofvariance.Theimagecanbeimproved
byadjusngthecontrastandgammacorrecon.B.MaximumNoiseFraconofthesamedatashowsthe
paralremovaloftheshadow.ExamplelecanbedownloadedthroughIDCubeLiteunderFile/Example
Files/PlascAndCoin.
D. Mishra et al., J. Spectral Imaging 10, a1 (2021) 7
(File–Downloadexamples)orfromthewebsitehps://
www.idcubes.com/examples.
Biomedicalapplicaons
With the development of clinically relevant hyper-
spectralimaginginstrumentaon,HSIhasemergedas
apowerfultoolfor investigatingcomplexbiological
systems.
1,25
Biologicalssuesinthevisiblerangeoendo
notprovidesucientcontrasttodisnguishthestruc-
turesofinterestand,therefore,requirecontrastagents
forcontrastenhancement.Hyperspectralimaging,with
itsinherentlyhighersensivitytominorchanges,can
replacesomeoftheelaboratestainingtechniquesand
significantlyacceleratethepathologicalpracticeboth
in vitro and in vivo. Clinical examples include histopa-
thology,
26
dermatology,
27
ophthalmology,
28
gastroen-
terology,
29
oncology
30,31
anddeepssueimagingwith
hyperspectralshortwaveinfrared(SWIR,900–2200 nm)
duetoahighpenetraonofSWIRphotonsthroughthe
skinandthessue.
32
Figure3.ImageClassicaonModule.IntheSpectralAngularMapping,theuserinteracvely
selectsdierentareas(classes)fromthe2Dimage.Althoughthereisnolimittothenumberof
classes,themoduleworksbestforoneortwoclasses.Thedarklinescorrespondto“badpixels”
thatareoenseenintheSWIRcameras.Thismaybeduetoadamagedpixelinthesensorarray.
Figure4.Timeforleopening,PCAprocessingandsegmentaonwithSAMwithtwo
classes.PC:DellVostro5090,IntelCorei7-9700CPU,3 GHz,RAM24 GB,Windows
10.
8 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
TheexampleshowninFigure5illustratestheulity
ofIDCubeLitetobeervisualisebloodvessels.First,
the acquired dataset was spectrally cropped to elimi-
nate the noisy wavelength channels. Since our imaging
systembasedontheInGaAsdetector(Ninox640,Raptor
Photonics)incombinaonwiththespectrographN17E
(Specim Inc.) used in this study typically has lower sensi-
vitybelow900nmandabove1700nm, these wave-
lengths were excluded. The RGB mode was then selected,
and the wavelengths were manually adjusted to visu-
alise the blood vessels. The image made with a conven-
onalcolourcameradoesnotshowthebloodvessels
(Figure5A).Thevisualisaonoftheresulngimagewas
furtherimprovedbyadjusngcorrespondingcolourband
histograms.TheresulngimageshowninFigure5Bpres-
ents blood vessels in a greater contrast than the visible
image.ThedatasetwasthentreatedwiththeMNFfunc-
onselectedfromtheANALYSEtab.SimilartothePCA
moduledescribedabove,thesowareenablestheuser
to select individual components and presents them in the
pseudo-RGBformat(Figure5C).Highcontrastforblood
vesselswasachievedbyusingcomponents#2and#3.
In addition to HSI, IDCube can handle other spec-
tral imaging modalities commonly used in preclinical
and clinical studies, such as Raman and Fourier trans-
forminfraredspectroscopies,anduorescence-lifeme
imaging microscopy.
33
Environmentalapplicaons
HSIofplantsprovidessoluonstoalargenumberof
challengesfrom identifying environmentalissues to
monitoring crops yield and diseases
34
andevendetecon
ofcontaminaons
35
andminerals.Theopcalsignature
ofplantsandespeciallyleavesisanimportantmonitoring
andpredicveparameterforavarietyofbiocandabioc
stresses.Figure6illustratesanapplicaonofIDCubeLite
onadatasetfromleaveswithdierentmoisturelevels.
Therightleafoneachimagebelongstoaplantgrown
undernormalcondions,andtheleleafwasexposed
to a drying element. This treatment was used to mimic a
droughtcondioninordertoshowcasetheeecveness
oftheindex.Figure6Ashowsanimagerecordedbya
convenonalvisiblecamerafromacellphonecamera.
Figure6B–Dshowprocessedimagesrecordedusing
aSWIRhyperspectralimagerinreeconmode.Low
signal/noise ratio bands were removed using a spec-
tralcroppingfuncon.Apseudo-RGBimagecomposed
fromthreewavelengthsshowsthedierencebetween
the two leaves (Figure 6B). The contrast between
twoleavescanbefurtherenhancedwithPCA.Three
selectedprincipalcomponents#1/2/3wereusedina
pseudo-RGBformatasred,greenandblue(Figure6C).
Combined in a single image, these components high-
lightthedierencebetweenthetwoleaves.Evenhigher
contrast can be achieved using a previously developed
indexofdroughtusingtheformula:I= (1529–1416 nm)/
(1519 + 1416nm)
36
(Figure 6D). This can be achieved by
selecngMathemacsfromtheANALYSISsecon,then
selecngMichelsonRaoandnallyselecngtwowave-
lengths 1416 nmand1529 nm.
Geospaalapplicaons
Geospaalremotesensingisoneofthemoremature
applications of hyperspectral imaging due to its
Figure5.Hyperspectralimagingofahand.A:madebyaconvenonalvisiblecamera;B:usingahyper-
spectralSWIRimager.Pseudo-RGBimageat1070 nm (red), 1260nm (green), 1320 nm(blue);C:MNF
funconappliedtotheHSIdataset.Pseudo-RGBimageat#3(red),#3(green),#2(blue)components.
ExamplelecanbedownloadedthroughIDCubeLiteunderFile/ExampleFiles/HandSWIR.
D. Mishra et al., J. Spectral Imaging 10, a1 (2021) 9
relativelylong history,beginning in the middle of
1970s.
37
Sincethen,alargenumberofplaormsbased
on satellites, planes and, recently, drones have been
developed.IDCubeLitecanbeusedonanyofthese
plaorms.Thecurrentversionofthesowareenables
dataprocessingfromhyperspectralandmultispec-
tralsatellitessuchasER-01Hyperion,
38
Sennel-2,
39
Orbitasatellites,
40
airbornesystemssuchasAVIRIS
41,42
andotherplaorms.Theuserrstdownloadsthele
fromtherelevantimageproviderwebsites.IDCubeLite
convertstheunzippeddataintotheIDCubeformat,
savesandautomacallyopenstheconvertedlefor
furtherprocessing.Anexampleofthisworkflowis
showninFigure7,wheretheoriginaldatasetwasrst
downloadedfromacommercialvendor(ApolloHunter),
convertedtotheIDCubeformatandprocessedto
produceanRGBimageusingthefirstthreebands
(Figure7A).ThedatasetwasthenprocessedbyPCA.
Forbettervisualisationoftheobjects ofinterest,
three principal components were used to construct a
pseudo-RGBimage(Figure7B).APCA-baseddatacube
wasfurtherclassiedusingaSAMmethodbyselecng
roadasendmemberspectratogenerateanimageof
roadsandstreets(Figure7C).
Futuredevelopment
OurcurrentversionofIDCubeLiteisdownloadable
freesowarewiththeperformancelimitedbytheuser’s
computaonalresources.ThefutureIDCubeplaorm
willaddresstheneedforaweb-accessibleplaormto
performcomplexandcomputaonallydemandingtasksin
real-me.Equippedwithadvancedimageprocessingand
machinelearningcapabilies,theweb–based,constantly
updatedIDCubeplaormwillenablegeospaal,biomed-
icalandotherscientistsandstakeholderstoperform
sophiscatedanalysiswithoutsignicantcomputaonal
resources,usingonlyconvenonaldesktopsorlaptops.
Conictofinterest
BerezinisthefounderandCEOofHSpeQLLC.
Figure6.HyperspectralimagingofleaveswithIDCubeLite.A:imageoftwosimilarleavesobtainedwith
aconvenonalcolourcamera;theleafonthelecamefromtheplantexposedtoadryingcondion;
B:contrastimprovementwithathree-bandapproachinapseudo-RGBimage:1421 nm(red),1351 nm
(blue)and1476 nm(green);C:PCAwiththreecomponents#1(red),#2(green),#3(blue)inapseudo-RGB
image;D:monochromacimagereecngadroughtindex(1529–1416 nm)/(1519 nm+1416 nm).Exam-
plelecanbedownloadedthroughIDCubeLiteunderFile/ExampleFiles/RoseLeaves.
Figure7.MulspectralimageoftheStLouisareawithfourbands:RGB+NIR:430–550 nm (blue),
490–610 nm(green);600–720 nm(red);750–950 nm(NIR).A:RGBimage;B:PrincipalComponent
Analysis(PCA);C:SpectralAngularMappingwithoneclassselected.SatelliteSensorPleiades-1B
(0.5 m)operatedbyAirbusDefence&Space.ThedatawereacquiredfromApolloHunter.Examplele
canbedownloadedthroughIDCubeLiteunderFile/ExampleFiles/StLouisarea.
10 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
Acknowledgements
The team would liketo acknowledge funding from
NaonalScienceFoundaon,NSF1827656(MB)and
NSF1355406(MB,RG),andMallinckrodtInstuteof
Radiology (HH, QC). The original standalone package
waslicensedbyHSpeQLLCfromWashingtonUniversity
wherethesowarewaspreviouslydevelopedandhas
beenmodiedbyHSpeQLLC.
References
1.
G. Lu and B. Fei, “Medical hyperspectral imaging: a
review,J. Biomed. Opt. 19(1),10901(2014).h p s://
doi.org/10.1117/1.JBO.19.1.010901
2.
W.Jahr,B.Schmid,C.Schmied,F.O.Fahrbach
and J. Huisken, “Hyperspectral light sheet micros-
copy,Nat. Commun. 6,7990(2015).hps://doi.
org/10.1038/ncomms8990
3.
N.Gat,“Imagingspectroscopyusingtunablelters:a
review,Proc. SPIE 4056, Wavelet Applicaons VII, pp.
50–64(2000).hps://doi.org/10.1117/12.381686
4.
N.GuptaandV.Voloshinov,“Hyperspectralimaging
performanceofaTeO
2
acousto-opctunablelter
intheultravioletregion”,Opcs Le. 30(9),985–987
(2005). hps://doi.org/10.1364/OL.30.000985
5.
D. Bannon, “Hyperspectral imaging: cubes and
slices”,Nat. Photon. 3(11),627–629(2009).h p s://
doi.org/10.1038/nphoton.2009.205
6.
Y.Khouj,J.Dawson,J.CoadandL.Vona-Davis,
“HyperspectralimagingandK-meansclassicaon
forhistologicevaluaonofductalcarcinomain situ”,
Front. Oncol. 8,17 (2018). hps://doi.org/10.3389/
fonc.2018.00017
7.
E.L.Wisotzky,F.C.Uecker,P.Arens,S.Dommerich,
A.HilsmannandP.Eisert,“Intraoperavehyper-
spectraldeterminaonofhumanssueproperes”,
J. Biomed. Opt. 23(9),091409(2018).hps://doi.
org/10.1117/1.JBO.23.9.091409
8.
M.E.Marn,M.B.Wabuyele,K.Chen,P.Kasili,M.
Panjehpour,M.Phan,B.Overholt,G.Cunningham,
D.Wilson,R.C.DeNovoandT.Vo-Dinh,
“Developmentofanadvancedhyperspectralimaging
(HSI)systemwithapplicaonsforcancerdetecon”,
Ann. Biomed. Eng. 34(6),10611068(2006).hps: //
doi.org/10.1007/s10439-006-9121-9
9.
W.R. Johnson, D.W. Wilson, W. Fink, M.S. Humayun
and G.H. Bearman, “Snapshot hyperspectral imaging
inophthalmology,J. Biomed. Opt. 12(1),014036
(2007).hps://doi.org/10.1117/1.2434950
10.
M. Wahabzada, M. Besser, M. Khosravani, M.T.
Kuska,K.Kersng,A.-K.MahleinandE.Stürmer,
“Monitoringwoundhealingina3Dwoundmodelby
hyperspectralimagingandecientclustering”PLOS
One 12,e0186425(2017).hps://doi.org/10.1371/
journal.pone.0186425
11.
M.Garcia,C.Edmiston,R.Marinov,A.VailandV.
Gruev,“Bio-inspiredcolor-polarizaonimagerfor
real-mein situimaging,Opca 4(10),1263–1271
(2017).hps://doi.org/10.1364/OPTICA.4.001263
12.
ENVI-GeospaalSoware.L3HarrisTechnologies,
Inc. hps://www.l3harrisgeospaal.com/Soware-
Technology/ENVI
13.
J.Jordan,E.AngelopoulouandA.Maier,“A
novelframeworkforinteracvevisualizaonand
analysisofhyperspectralimagedata”,J. Electr.
Comput. Eng. 2016,2635124(2016).hps://doi.
org/10.1155/2016/2635124
14.
D.Landgrebe,“Hyperspectralimagedataanalysis”,
IEEE Signal Proc. Mag. 19(1),1728(2002).hps: //
doi.org/10.1109/79.974718
15.
Hyperspectral Image Processing Toolbox. Mathworks,
Inc. hps://www.mathworks.com/help/images/
hyperspectral-image-processing.html
16.
A.Candol,R.DeMaesschalck,D.Jouan-Rimbaud,
P.HaileyandD.Massart,“Theinuenceofdata
pre-processinginthepaernrecognionofexcipi-
entsnear-infraredspectra”,J. Pharm. Biomed. Anal.
21(1),115–132(1999).hps://doi.org/10.1016/
S0731-7085(99)00125-9
17.
E.Grisan,M.Totska,S.Huber,C.KrickCalderon,
M.Hohmann,D.LingenfelserandM.Oo,
“DynamiclocalizedSNV,peakSNV,andparalpeak
SNV:Novelstandardizaonmethodsforpreprocess-
ingofspectroscopicdatausedinpredicvemodel-
ing”,J. Spectrosc. 2018,5037572(2018).hps://doi.
org/10.1155/2018/5037572
18.
C.-I.ChangandA.Plaza,“Afastiteravealgorithm
forimplementaonofpixelpurityindex”,IEEE
Geosci. Remote Sens. Le. 3(1),63–67(2006).h p s://
doi.org/10.1109/LGRS.2005.856701
19.
C.-I.Chang,“Aninformaon-theorecapproach
to spectral variability, similarity, and discrimina-
onforhyperspectralimageanalysis”,IEEE Trans.
Inform. Theory 46(5),19271932(2000).hps://doi.
org/10.1109/18.857802
20.
F.A.Kruse,A.Leo,J.Boardman,K.Heidebrecht,
A. Shapiro, P. Barloon and A. Goetz, “The spectral
imageprocessingsystem(SIPS)-interacvevisual-
izaonandanalysisofimagingspectrometerdata”,
D. Mishra et al., J. Spectral Imaging 10, a1 (2021) 11
AIP Conf. Proc. 283,192201(1993).hps://doi.
org/10.1063/1.44433
21.
G.Zuendorf,N.Kerrouche,K.HerholandJ.C.
Baron,“Ecientprincipalcomponentanalysisfor
mulvariate3Dvoxel-basedmappingofbrain
funconalimagingdatasetsasappliedtoFDG-PET
andnormalaging,Hum. Brain Mapp. 18(1),13–21
(2003).hps://doi.org/10.1002/hbm.10069
22.
C. Rodarmel and J. Shan, “Principal component anal-
ysisforhyperspectralimageclassicaon”,Survey.
Land Inform. Sci. 62(2), 115 (2002).
23.
M.S. Tooms, Colour Reproducon in Electronic Imaging
Systems: Photography, Television, Cinematography.
John Wiley & Sons (2016). hps://doi.
org/10.1002/9781119021780
24.
A.A. Green, M. Berman, P. Switzer and M.D. Craig,
Atransformaonfororderingmulspectraldatain
termsofimagequalitywithimplicaonsfornoise
removal”,IEEE Trans. Geosci. Remote Sens. 26(1),
65–74(1988).hps://doi.org/10.1109/36.3001
25.
S.Kiyotoki,J.Nishikawa,T.Okamoto,K.Hamabe,M.
Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi,
S.SatoriandI.Sakaida,“Newmethodfordetecon
ofgastriccancerbyhyperspectralimaging:apilot
study”,J. Biomed. Opt. 18(2),026010(2013).h ps: //
doi.org/10.1117/1.JBO.18.2.026010
26.
G.Lu,D.Wang,X.Qin,S.Muller,J.V.Lile,X.Wang,
A.Y. Chen, G. Chen and B. Fei, “Histopathology
featureminingandassociaonwithhyperspectral
imagingforthedeteconofsquamousneoplasia”,
Sci. Rep. 9(1),17863(2019).hps://doi.org/10.1038/
s41598-019-54139-5
27.
A.Pardo,J.A.Guérrez-Guérrez,I.Lihacova,J.M.
López-HigueraandO.M.Conde,“Onthespectral
signatureofmelanoma:anon-parametricclassi-
caonframeworkforcancerdeteconinhyper-
spectralimagingofmelanocyclesions”,Biomed.
Opt. Express 9(12),6283–6301(2018).hps://doi.
org/10.1364/BOE.9.006283
28.
X. Hadoux, F. Hui, J.K.H. Lim, C.L. Masters, A.
Pébay,S.Chevalier,J.Ha,S.Loi,C.J.Fowler,C.
Rowe,V.L.Villemagne,E.N.Taylor,C.Fluke,J.-P.
Soucy,F.Lesage,J.-P.Sylvestre,P.Rosa-Neto,S.
Mathotaarachchi,S.Gauthier,Z.S.Nasreddine,
J.D.Arbour,M.-A.Rhéaume,S.Beaulieu,M.
Dirani,C.T.O.Nguyen,B.V.Bui,R.Williamson,J.G.
CrowstonandP.vanWijngaarden,“Non-invasivein
vivohyperspectralimagingoftherenaforpotenal
biomarkeruseinAlzheimer’sdisease”,Nat. Commun.
10,4227(2019).hps://doi.org/10.1038/s41467-
019-12242-1
29.
S.Ortega,H.Fabelo,D.K.Iakovidis,A.Koulaouzidis
andG.M.Callico,“Useofhyperspectral/mulspec-
tral imaging in gastroenterology. shedding some-
dierent-lightintothedark,J. Clin. Med. 8(1),36
(2019).hps://doi.org/10.3390/jcm8010036
30.
S.J. Leavesley, M. Walters, C. Lopez, T. Baker, P.F.
Favreau, T.C. Rich, P.F. Rider and C.W. Boudreaux,
“Hyperspectralimaginguorescenceexcitaon
scanningforcoloncancerdetecon”,J. Biomed. Opt.
21(10),104003(2016).hps://doi.org/10.1117/1.
JBO.21.10.104003
31.
E.Kho,L.L.deBoer,K.K.VandeVijver,F.van
Duijnhoven,M.VranckenPeeters,H.Sterenborg
andT.J.M.Ruers,“Hyperspectralimagingforresec-
onmarginassessmentduringcancersurgery”,Clin.
Cancer Res. 25(12),3572–3580(2019).hps://doi.
org/10.1158/1078-0432.CCR-18-2089
32.
T. Du, D.K. Mishra, L. Shmuylovich, A. Yu, H.
Hurbon, S.T. Wang and M.Y. Berezin, “Hyperspectral
imagingandcharacterizaonofallergiccon-
tactdermasintheshort-waveinfrared”,J.
Biophoton. 13(9), e202000040 (2020). hps://doi.
org/10.1002/jbio.202000040
33.
M.Lukina,K.Yashin,E.Kisileva,A.Alekseeva,
V.Dudenkova,E.V.Zagaynova,E.Bederina,I.
Medyanik, W. Becker, D. Mishra, M.Y. Berezin,
V.I.ShcheslavskiyandM.Shirmanova,“Label-free
macroscopicuorescencelifemeimagingofbrain
tumors”,Front. Oncol. in press (2021). hps://doi.
org/10.3389/fonc.2021.666059
34.
A.Lowe,N.HarrisonandA.P.French,
“Hyperspectralimageanalysistechniquesforthe
deteconandclassicaonoftheearlyonsetof
plantdiseaseandstress”,Plant Meth. 13(1), 80
(2017).hps://doi.org/10.1186/s13007-017-0233-z
35.
P.V.Manley,V.Sagan,F.B.FritschiandJ.G.Burken,
“Remotesensingofexplosives-inducedstressin
plants:hyperspectralimaginganalysisforremote
deteconofunexplodedthreats”,Remote Sens.
11(15),1827(2019).hps://doi.org/10.3390/
rs11151827
36.
D.M. Kim, H. Zhang, H. Zhou, T. Du, Q. Wu,
T.C.MocklerandM.Y.Berezin,“Highlysensive
image-derivedindicesofwater-stressedplants
using hyperspectral imaging in SWIR and histo-
gramanalysis”,Sci. Rep. 5,15919(2015).hps://doi.
org/10.1038/srep15919
12 IDCubeLite:FreeInteractiveDiscoveryCubeSoftwareforMulti-andHyperspectralApplications
37.
A.F.Goetz,“Threedecadesofhyperspectralremote
sensingoftheEarth:apersonalview,Remote
Sens. Environ. 113,S5–S16(2009).hps://doi.
org/10.1016/j.rse.2007.12.014
38.
J.S. Pearlman, P.S. Barry, C.C. Segal, J. Shepanski,
D. Beiso and S.L. Carman, “Hyperion, a space-
basedimagingspectrometer,IEEE Trans. Geosci.
Remote Sens. 41(6),1160–1173(2003).hps://doi.
org/10.1109/TGRS.2003.815018
39.
M.Drusch,U.DelBello,S.Carlier,O.Colin,V.
Fernandez, F. Gascon, B. Hoersch, C. Isola, P.
LaberinandP.Marmort,“Sennel-2:ESAsop-
calhigh-resoluonmissionforGMESoperaonal
services”Remote Sens. Environ. 120,25–36(2012).
hps://doi.org/10.1016/j.rse.2011.11.026
40.
OrbitaAerospace.hps://www.obtdata.com/en/
41.
R.O.Green,M.L.Eastwood,C.M.Sarture,T.G.
Chrien, M. Aronsson, B.J. Chippendale, J.A. Faust,
B.E.Pavri,C.J.ChovitandM.Solis,“Imagingspec-
troscopyandtheairbornevisible/infraredimaging
spectrometer(AVIRIS)”,Remote Sens. Environ. 65(3),
227248(1998).hps://doi.org/10.1016/S0034-
4257(98)00064-9
42.
L.Hamlin,R.Green,P.Mouroulis,M.Eastwood,D.
Wilson, M. Dudik and C. Paine, “Imaging spectrom-
etersciencemeasurementsforterrestrialecology:
AVIRISandnewdevelopments”,2011 Aerospace
Conference,pp.17(2011).hps://doi.org/10.1109/
AERO.2011.5747395